
Teorema de Pitágoras
En todo triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.

El Teorema de Pitágoras es la relación matemática que ocupa el primer lugar en el recuerdo de los tiempos escolares. Es, sin duda alguna, la más importante, conocida, útil y popular en casi todas las civilizaciones; la que más nombres, atención, curiosidad y pruebas ha recibido a lo largo de los siglos. Es un teorema que ha causado una gran admiración a todo tipo de personas –matemáticos y no matemáticos–, pero también una gran extrañeza y perplejidad a otras –Leonardo, Hobbes, Schopenhauer, Einstein, …– porque, a diferencia de otros teoremas, aparentemente no existe ninguna razón intuitiva para que los cuadrados construidos sobre los lados de un triángulo rectángulo –la hipotenusa y los catetos– deban tener un vínculo tan estrecho entre sí.
La verosimilitud del Teorema de Pitágoras no depende de un dibujo bien ilustrado sino que obedece por completo a un ejercicio intelectual puro alejado de lo sensorial –la deducción lógica– Por eso, para muchos historiadores de la ciencia, el Teorema de Pitágoras tiene un valor simbólico iniciático como elemento cultural responsable de la aparición de la Geometría racional en la Escuela Pitagórica y por tanto forma parte ineludible de la semilla básica de la propia naturaleza de la Matemática desde su origen como ciencia especulativa y deductiva en los albores de la civilización helénica.
La emergencia de este teorema en el horizonte histórico cultural, pero también en el horizonte escolar, señala el primer salto intelectual entre los confines de la especulación empírica e inductiva y los dominios del razonamiento deductivo. En efecto, el Teorema de Pitágoras pudo estar en el origen de la demostración –que caracteriza a la Matemática con respecto a las demás ciencias– ya que la prueba pitagórica del Teorema de Pitágoras tal vez haya sido la primera demostración verdaderamente matemática de la Historia. Y también el Teorema de Pitágoras está situado en el umbral que inicia la práctica deductiva en el desarrollo de la Matemática escolar elemental.
El Teorema de Pitágoras aparece por doquier en la Matemática. Es la base de multitud de teoremas geométricos, de los estudios sobre polígonos y poliedros, de la Geometría Analítica y de la Trigonometría. –la fórmula cos2a + sen2a = 1 es un caso particular del Teorema de Pitágoras y el Teorema del coseno es una generalización del mismo–. La relación pitagórica x2 + y2 = z2
es la ecuación de la circunferencia y la raíz histórica del Análisis indeterminado de Diofanto y Fermat. El Teorema de Pitágoras también pudo ser el germen de la dramática aparición pitagórica de la inconmensurabilidad de gran trascendencia en la estructuración y sistematización platónico-euclídea de la Geometría griega.
Al ser la fuente de casi todas las relaciones métricas de la Geometría, El Teorema de Pitágoras–como principal tesoro de la tradición pitagórica– tiene un valor práctico, teórico y didáctico inconmensurable. Como paradigma de la Matemática y de la Educación matemática, el más fascinante y célebre teorema geométrico pertenece al imaginario cultural de casi todos los pueblos.

Para una lectura del artículo completo puede consultarse el siguiente enlace:
EL TEOREMA LLAMADO DE PITÁGORAS. UNA HISTORIA GEOMÉTRICA DE 4.000 AÑOS. Pedro Miguel González Urbaneja
Y para una completa información puede también consultarse el libro: Boyer, Carl B.: Historia de la matemática. Alianza Universidad Textos, 1992.
En este clip, presento algunas pruebas del Teorema animadas en PowerPoint así, como la construcción de un árbol fractal pitagórico; verlo a pantalla completa y en HD es una opción. Espero sea de su agrado.
Pitágoras… uno de los grandes.
Me gustaMe gusta